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In this talk I will discuss how relativistic meson theory is developed and
applied to the electromagnetic description of the two nucleon system. These
techniques are being extended to.the three body system, and very similar methods
nave been applied to nuclear matter, but I will not review this work here. Many
of the experiments proposed for ELSA and CEBAF will test the ideas discussed
here, but I will devote the bulk of my discussion to the theoretical 1deas
rather than experimental tests.

It iz no longer possible to regard relativistic meson theory as fundaﬁen-
tal. I view it as a consistent relativistic theory of effective interactions
between selected quark clusterg, which are treated as structureless particles.
The emphasis is on the words "consistent" and "relativistic.” This means that
we will insist that the theory be manifestly covariant at every step (although
I will not hesistate to do calculations in especially convenient frames of ref-
erence}, and that the electromagnetic current operator J* and the relativistic
mnotential® ¥ be consistent with one another. (The relativistic potential V
is actually the kernel of an integral equation.) Some attempt 1s made to allow
for the structure of the mesons and nucleons by inserting phenomenological form
factors at the vertices and, in some cases, using simple phenomenological func-
tions for self energies, but the basic equations of the theory are obtained from
a Lagrangian for point-like mesons and nucleons. The justification for using
such a theory today is that it gives a calculable theory of nuclei which employs
the degrees of freedom most apparent in nuclear physics, and which through de-
tailed comparison with experiment can help us uncover those phenomena which re-
quire the explicit use of quark degrees of freedom.

T will begin with a discussion of how relativistic equations can be deve-
loped from a consideration of the summation of infinite classes of diagrams.
Section 2 will summarize some applications of relativistic few body equétions,
including a brief account of some recent fits to the nucleon-nucleon phase

shifts not vet published. Then, in Section 3, I will discuss electromagnetic



interactions from the same point of view developed in Section 1, and finally

Section 4 will review some applications involving electromagnetic interactions.

1. Refativistic Wave Equations

1.1 Types of Equations

Relativistic equations can be written in the following very general form

Mz U+ VGM m

where M is the scattering amplitude, V is the kernel or relativistic potential,
and G the propagator. If V is in some sense small, Eq. (1} can be solved by
iteration as shown diagrammatically in Fig. 1 for two particles. We see that
the equation can be regarded as a means of summing a generalizeé Born series,
or summing an infinite number of diagrams. If V is small, the solution to {1}
will not differ significantly from taking V alone, and the equation is not deing
much for us. However, when V is large, the Born series will not exist, but the
solution to (1) will. In this sense relativistic equations enable us‘to treat

non-perturbative problems. ’.
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Bound state wave functions can be obtained from the residues of the bound
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where p and p' are the relative 4 mmomenta of the final and initial state respec-
tively, W is the total CM energy, and R is a remainder function regular at wz =
M%- Substituting {2} into (3) one can obtain both the bound state wave egua-

tion and the normalization condition(1)

I =UG (3)
1= Irt %_G—-——-G)I‘ (4)
dw dW



The relativistic wave function & is related to the vertex function [ by
v o= VGT _
r=Ww (5)
To find the relatlvistic kernel V from an infinite class of diagrams,
one must first decide on what class of diagrams to sum, and then introduce a
scheme for organizing the sum. I will assume that the smallest class of dia-
grams which will describe the dynamics'adequately is the sum of all ladder and
crossed ladder Feynman diagrams (with form factors at the vertices and on the
propagators). In particular, it is known that crossed ladders make important
contributions, and therefore the ladder sum alone is cartainly not adequate.
If particle production and inelasticities are to be treated explicitly, a
larger class of Feynman diagrams including self energy contributions is almost
certainly necessary, but for elastic processes the ladder and c¢rossed ladder
sum may be sufficient. This sum, up to 6th order in the coupling constant, is
shown in Fig. 2 for the case of two heavy nucleons exchanging a light meson.
The ladder diagrams are (a), (b), and (d); all others are crossed ladders.
The way in which this sum is organized now depends on how the two bedy
propagator G is defined. In the most general case, the propagator G is con-
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strained according to some covariant prescription so that it depends on only

the relative 3 momentum instead of the relative 4 momentum. The advantage of



such an approach is that the number of free variables is thereby reduced,
making the resulting integral equation simpler to solve and easier to inter-
pret. The kernel V corresponding to the constrained G is then the sum of
all diagrams which cannot be obtained by iterating lower order kernels as
shown in Fig. 1 (where the constrained propagator is represented by a verti-
cal dotted line cutting the two nucleons). Hence the precise definition of
'V depends on the definition of G. The kernel up to 4th order is shown dia-
grammatically in Fig. 3. The first diagram (3a) is the one boson exchange
(OBE) contribution, the second (3b) is the difference between the full box
diagram and the first iteration of the OBE, .which is called the subtracted
box, and the third {3¢) is the crossed box. If the unconstrained 2 body

propagator is used, as in the Bethe Salpeter (BS) equation(z}, then the full
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box is obtained after one iteration of the OBE, so the subtracted box is zero.

With constrained propagators, the full box is not obtained after one iteration,

so the subtracted box must be added. In 6th order subtracted boxes and sub-
tracted crossed boxes coming from Figs. 2d-f must be included in the kernel
as well as the fully crossed ladder diagrams (2g-1), and so on to all orders.
What the relativistic equation has done for us is to replace the full sum in
Fig. 2, which certainly does not converge for large coupling constants, with
a sum like that shown in Fig. 3 for the kernel. The procedure will only work
if the sum for the kernel converges rapidly. Before I discuss this important
issue, I will review a number of popular choices for the propagator G.

Four choices of G are summarized in Table I. The BS equation conserves
4 momentum in the intermediate state, so it remains on the energy shell defined
by Po = W, where W is the initial energy of the two body system and Po is the
total energy in the intermediate state {(both in the CM system}. This leaves
all foﬁr components of the relative 4-momentum, p = %(p1 - 02}, unconstrained.
Alternatively, if we restrict one particle to its positive energy mass shell

(3) 2 =*2,1/2
{say particle 2) , then Po = W and Pog = (M~ « p~) - Ep fixes the relative

energy in a covariant way



leaving only the three components of E as free variables.
strict both particles to their mass shells, we must drop the requirement that

P0 = W, or go off the energy shell. One way of doing this was developed by
Logunov and Tavkhelidze

this method is due to Todorov .

1
Py = '2-".J - Ep

(5]

If we wish to re-

and by Blankenbecler and Sugar ; a variation of

(6)

An advantage of this approach is that the

number of spin degrees of freedom is reduced because both particles are on
Finally, the light

‘front equation(T} comes from a different approach in which field theory is

shell and hence have only two spin degrees of freedom.

quantized on the light front

(8}

, which loosely speaking refers to quantizing

fields at equal values of T = t+x (the velocity of light c is taken egual to
unity and x can be any one of the three directions in space). The variable

Relativistic Two Body Egquations

Name Description of Number of Variables
G Momentum Spin
Bethe-Salpeter On energy shell
(BS) Both particles off
mass shell 4 4 x4 = 16
Particle 1 off shell | On energy shell
(GT) One particle off mass
shell 3 2x 4 =28
Blankenbeclér-Sugar Off energy shell
Logunov=-Tavkhelidze Both particles on mass
{BSLT) shell 3 2x 2z 4
Light Front off p_=E - Py shell
{LF) Both particles on mass
shell 3 2x2z4
conjugate to v is p_ = E - px which now plays a role similar to that usually

played by the energy, so that this approach bears a close formal resemblance

5=



to old fashioned time ordered perturbation theory, where all particles are
on tne mass shell, but intermediate states are off the energy (p_ in this
case} shell., However, while there is a formal resemblance between T ordered
diagrams and time ordered diagrams there is a profound difference which can-
not be overemphasized. The T ordered formalism is manifestly covariant at
every step while time ordered perturbation theory breaks covariance. This is
related to the fact that t is invariant under boosts in the x direction, while
t is not. A disadvantage of the light front formulation is that it breaks
manifest rotational invariance. Several authors have used LF techniques in
recent years.(q"12) ' ' :

The extension of relativistic equations to more than two bodies is a
subject of increasing importance. All of the equations mentioned above can
be extended but the BS equation has 4 (N-1) integration variables while the
constrained equations (in common with non-relativistic equations) have only
3 (N-1). It is important that any n bodv system of n<N particles must be
dynamically independent of the others when the others are beyond the range of
forces. A serious deficiency of the BSLT egquation is that it does not satisfy

this requirement. MNamyslowski and weber(13, have shown that the three body

LF equation satisfies the cluster property, and it has recently been shown(14)
that the three body generalization of the G1 equation also has this property.

I wish to emphasize that the constrained equations should not be regarded
as an approximation to the BS equation. From a relativistic point of view,
all of the equations are equally good starting points and the question of
which equation is "best" will depend on other criteria, such as how rapidly
the series for the kernel coriverges.

1.2 Convergence of the infinite series for V

I now want to discuss the convergence cf'the infinite series for V, the
first three terms of which are shown diagramatically in Fig. 3. If the terms

h order kernel cancel among themselves, making the full Znth order

in the 2nt
kernel smaller than a typical 2r1t:h order term, we conclude that the series
for V converges more rapidly than if no cancellations weres present.

As an example of how thesse ideas work, consider the case of a light par-
ticle m interacting with a very heavy, neutral scalar particle M. It has been
known for many years(15) that in the limit as M== the ladders and crossed
ladders cancel in such a way that iLng total result can be obtained by ilterating

the OBE Kerrnel with the heavy particle restricted to its mass shell {other



constrained prescriptions also work; when M»= they are equivalent to putting

the heavy particle on shell}. This means that the irreducible kernel reduces

H(DH e

FIGURE 4.

exactly in thisllimit to OBE as shown in Fig. &4 (there the x means the par-
ticle is on-shell). In terms of the diagrams shown in Fig. 3, it means tpat
the subtracted box and the crossed box exactly cancel when Mio, Furthermofe,
the same cancellation takes place in every order, leaving the OBE to give the
exact relativistic one body equation for the light particle m {(Dirac if m has
spin-é, Klein Gordon if m has spin zero) moving in an instantaneous potential.

Unfortunately, the BS equation does not have a one body limit in this
sense. In the BS equation, the subtracted box is exactly zero, leaving nothing
to cancel the contributions from the crossed box. This happens in every order,

so that the BS kernel in the M»» limit remains an infinite sum.

When both particles have spin, or when the heavy one is charged, such

general results have not been proved, but may very well be true in some cases.

For example, the cancellation has alsc been observed to work in 4th order for

(3,16-17) The cancellation alsc occurs in A

two spin-% particles in QED.
order for two heavy soin %-nucleons exchanging nseudoscalar, isovector pions,
provided the ©-N interaction is treated in a manner consistent with chiral
symmetry.(15) I will now describe.these results in somewhat more detail.

To order 32 in the n=-N interacﬁion. chiral invariance implies that the

pseudoscalar gYSTi coupling must be accompanied by a d-like 2mNN contact term



of the form g 6 /M where i and j are the isospin indices of the two pions.

There are then A diagrams which
th

” N N - contribute to the 4~ order kernel

"é L o L “y:’"* as shown in Fig. 5. The first two
: : : ! RN {a) and (b), are the subtracted box
(a) (b) (e} (shown for the case when ﬁarticle 2

is off shell), (c) 1s the crossed

*h—jﬁzﬂﬂt *Fﬁ"—jrﬁ' :v17~E—~+ box, {d) and (e} are triangle.dia-
Syt \/'. i B K ; grams involving one contact inter-

— ' ot action, and (f) is the bubble in-

td) (e) () volving two contact interactionms,

FIGURE 5 | In a scalar @3 theory, only the

first three occur.

In Ref. (15) the 4*P order kernel for both the ¢3 and realistic chiral

r

models were studied for a restricted propagator with a factor

8 101+0) 02 )~ (1) 0P 12) ]

where -1<v<1 varils so that when v = 1 particle one is on shell, when v = -1
0 they are symmetrically off shell similar

particle 2 1s on shell, and when v
to the BSLT case. For the scalar case, in the limit as M»=, the result for the

subtracted box (43) and the crossed box {4-) 1s

Vi = ¥y - ﬁ{(l—va) + 2(1+v2)6]V1

= - 4
V= v, +gl2 + he]vi

(6)
where u Is the exchanged particle mass,
8= ——{p + p - 2Me) (7
u
is a non-local, energy dependent term, and
Volt) = j ey 2
l6ﬂ
N
v.(t} = & (8)

1 6hnM2(hu2-t)



with t = -(p - ;')2 being the momentum transfer. The conclusions are that (i)
the leading term Vo cancels for all choices of v, but that (ii)1only the choices
lvl = 1 give an energy independent, local potential to order M™'. Note that
while v = 0 minimizes the local piece of the potential, it also maximizes the

non-local, energy dependent piece. For the realistic chiral model, the 4 terms

are
Vyg = (3-27 1, ){-U + %(1—\)2)U1 + MH-(l-uz)eua}
v,.= (32t ety My, + 2u)
. 12
Vip =129, - “ﬁHUl
Vhy = -6U (9)
where 8 is as defined in (7), and
U = gh dg{[g‘hual}lla
° el Ja &t &
I
N - 2
T atE Y LT
_5;_ " S5
U, = ¢
2 W W2 o (10)

The conclusions are the same; the leading term Uo cancels for all v, but only
for |v| = 1 does the energy dependent, non-local part vanish.

2. Appfications ot Refativistic Few Body Equations

I will only discuss very briefly a few applications of these ideas to cal-
culations of the bound state and scattering properties of few body systems.

2.1 The Two Nucleon System

Fits to the two nuclecon phase shifts for energies below 300 MeV have been
{18) {19)

obtained by Fleischer and Tjon and by Zuilhof and Tjon using the BS
equation in OBE approximation. These fits have been extended to energies up to
1000 MeV by van Faassen and Tjon(ZO}, who describe the inelasticity by including

NA intermediate states. Fits to the phase shifts below 400 MeV have also been

-9~



. 1
obtained by Gross and Holinde using the G] equat:Lon(2 )

» and I want to describe
these new, unpublished results in a little more detail.

The relativistic kernel employed in Ref. (21) consists of an OBE model with
only four mesons: W, 0, p, and w. (Instead of varying the o mass and coupling
constant, two sigmas of fixed masses at 350 MeV and 760 MeV were chosen, and
the couplings of each varied.) Form factors were used at the meson-nucleon
vertices, and a form factor was alsc used with the off-shell nucleon propagator
to improve convergence. While only four mesons are used, the number of para-
meters varied is similar to that used in conventional OBE models with more

' mesons, bhecause two mixing parameters were used which do not appear in usual
approaches. These are A and 4, where A varies the fraction of 75 to YSYu
coupling at the 7NN vertex{1), and W varies the fraction of o and P couplings
at the pNN vertex. The 7NN and pNN couplings were defined so that when the
nucleons are on their mass shell the coupling is strictly independent of the
value of the mixing parameter (for the pNN coupling one uses the Gordon decompo-
sition, which only holds on shell, to transform "V into Pu'}.Hence, dependence
of the results on these two parameters is a direct measure of the possible im-
portance of off shell effects, and we find that such effects are large. In
fact it is because of the splitting between the 180 and 381 phase shifts in-
troduced by the A dependence that we do not need the isovector-scalar meson §
in these fits.

Another novel feature of the G1 equation employed in these fits is that
the off-shell Dirac nucleon has four spin states; two for its positive energy
state and two for its negative energy state. One can separate the positive
and negative energy "channels", giving a coupled set of eguations of the fol-
lowing form(1)

(2E, - W) b7 = vt 4 ytTOT

W o= v . v (1

In Ref. (21} the approximation V' = 0 was taken, yielding the "solution®
+e
+ ++ fv | +
(2Ek-W)lb = (v Marraanl
: (12)
which shows how the negative energy channel, which makes noé contribution to the
asymptotic states, modifies the effective interaction at short range. To obtain

Eg. (12) one uses the fact that the matrix potential in Eg. {11) is hermitian.



Another novel feature of this treatment is the presence of virtual "wrong"
symmetry channels. These channels, which are symmetric under the interchange
of three momentum and spin indices, are not forbidden by the Pauli principle in
a region of phase space where the relative energy p0 is not zero, but must vanish
when Py = 0 (i.e. when both particles are on shell). It turns Put that it is
necessary to explicitly antisymmetrize the potential“;o guarantee that these
channels are really virtual (i.e. are zero when Py = 0), and this has been
done in Ref. (21). These effects are present only for partial waves where L=J.

The result of all these considerations is that the coupled equations (11)
contain four channels for all partial waves. For partial waves whidh are
3s, - ?p,) there
is a doubling due to the presence of negative energy states. For partial waves

which were formally uncoupled, there is both a doubling due to the presence of

coupled by the tensor force in non-relativistic theory (e.g.

negative energy states, and due to coupling to virtual wrong symmetry channels.
Relativistic and off mass shell effects can then be investigated. It has
been known for over ten years that a major effect of the negative energy channel

is to provide repulsicn at short range(1).

1.5 v T T T T
E E %I }sol ; Fig. 6, taken from Ref. (1), shows that
1.0 E‘ :|' ‘ —— This Puperi the quadratic terms, which are the
F ] === Reid SC 3 squared terms in the effective poten-
osfE U N T R
oS ] tial given in Eq. (12), are large and
E 0 - ﬂ \‘Huﬁz 3 repulsive, We find the same effect in
> - 4 the actual fits to the phase shifts,
-0.5 5 E so that these effects are not an arti-
E 5 fact of the approximations made in
-0 - (a) E Ref. (1). Preliminary results give a
-5 T . value of A = 0.3317, very close to the

03 (g™ 0 value of A = 0.41 preferred in Ref. (1),
.
and show that V'~ terms coming from
FIGURE 6 mesons other than the pion are, in some

cases of comparable importance to the large V;-contribution. One effect which

is probably due to this repulsion is that the w coupling constant which emerges
from this fit is

= 9.52

P

~11-=



a value similar to that obtained in Ref. (19), and considerably smaller than
that needed in many non-relativistic OBE fits.

The effect of the coupling to virtual wrong symmetry channels has been
locked at flor the 1P1, 3P1, and 3D2 channels. In all of these cases the effects
at 300-400 MeV are well outside of the error bars for the empirical phase shifts;
in the 1P1 case this coupling alters the shape of the phase shifts in a helpful
way, and in the 3D2 case it provides helpful repulsion.

- Deuteron wave functions have not yet been obtained for this case. However,
it seems very likely that the wave func-
os T - T . tions obtained in Ref. (24} and shown in
Fig. 7 will be very similar to what will
be obtained here. In addition to the large
S and D state wave functions u and w, one

obtains smaller negative energy P state

v, wave function vt and vs corresponding to
K spin singlet and triplet combinations.
®¥E P ™ ¥ T3 pelativistic deuteron wave functions
| SIGURE 7 have ?;g? been obtained by Zuilhof and
Tjon.
What is one to conclude from all this? While it is somewhat early to say,
it is my view that almost any equation with a sufficient number of boscons and

about 10 parameters can be made to fit the NN phase shifts below 400 MeV. This

does not mean that the differences between relativistice equations are small, or
that the relativistic effects themselves are small. In fact, such differences
are known to be numerically large(19’26]. Rather, it appears that adjustments
of 10 parameters can largely compensate for these differences. Since the para-
meters have physical significance, the extent to which their adjusted values
agree with values determined from other physical processes could be a test of
the validity of the equation. Perhaps a better method is to see how well a
given equation, "tuned" to the two body problem is able to describe the three
body problem, nuclear matter, and other calculable system=:.

2.2 QOther Systems

There is evidence that relativistic effects increase the binding of the
three body system, reducing the discrepancy between the calculations and ob-

served binding. Coester and Wiringa(27) found an increase of 1.7 MeV for the



triteon binding and 4.3 MeV for the alpha bincing, and Rupp(ZB), using a sepa-

rable BS equation, found similar effects. Unfortunately, neither calculation
can 2e regarded as treating the dynamics in a realistic way. A fully relati-
vistic treatment of the three body system, with realistic dynamics consistent
with the two body problem, is needed. Such a calculation, using the three body
version of the G1 equatiorn is possible.‘14) This approach satisfies the cluster
property, vields relativistic Faddeev equations with the same number of momen-
tum variables as the nbn-relativistic equation, and {as in the_non-relativistic

case) can be reduced analvtically to a two dimensional integral equation for
(29)

' ‘ - (32)
Relativistic calculations of nuclear matter(30’31), and the NN system

coupled partial waves

have also been carried out. These show interesting effects due to relativity

which I will not discuss here.
3. Efectromagnetic Tnierpctions

I now turn to the question of how electromagnetic interactions of few body
nuclei can be treated relativistically using armplitudes cobtained from the equa-
tions discussed above.

Paralleling the discussion in section 1.1, I begin here by assuming that
the elactromagnetic interaction (in the one photon exchange approximation) is
obtained by letting the photon couple to the basic ladder and crossed ladder

sum in all possible oplaces. The resulting sum is then simplified as much as

—T_j—-i- | iIL-!-‘\/J +i£i +"=§M!}

FIGURE 8
possible by summing ail diagrams with reducible parts (recalling that the defi-
nition of recucibility depends on the definition of the propagator}. This latter
step is illustrated in Fig. 8 for the case of a BS propagaftor and the photon in-
terac-ion with one of the particles in the initial state. The diagrams which

remair after this process can be written
:{l—l = Ju - JuGH+ HGJ”’ -+ HGJu’ M {12}

w . P
where I9 is the full sum, and J 1is the current ooerator. A similar formula

for "ound states can be oh%tained from {12) by going to the bound state pole



and using Eq. {2). For the G1 equation, if the dynamics are assumed to be
satisfactorily described by the OBE kernel (Fig. 9a), the subtracted box
(Fig. 9b}, which will be drawn with a small particle on the second particle
to indicate that it is the sum of two terms Fig. Sa, b, and the crossed box
{Fig. 9c), then, if the mesons are neutral, the current operator is as shown
in Fig. 10a-c. If the meson is charged, the additicnal diagrams.éhown in
Fig. 10d-f must be added. The point is that the current operator 1s uniquely
determined; it will contain precisely those terms which are in the kernel,
suitably modified to include the photon interaction.

These remarks imply that the two meson exchange current can be expected
to be important, since experience has

! -+ E E 4. :< _ taught us over the last decade that
et e S the two meson exchange diagrams are im-
(2) (b) (e) portant in the nuclear force. However,
FIGURE 9 in the large M limit, the terms analo-

gous to the subtracted box and crossed
box (Figs. 10 b and ¢, and 10 e and [}
tend to cancel, suppressing the two
mescn exchange over what it would other-
.Wise be.

Most discussions so far have been
limited to the relativistic impulse
approximation (RIA-Fig. 10a) and Fig.
10d, the relativistic meson exchange
contribution {MEC). The RIA can be
further decomposed intc time ordered

(e) (£)
FIGURE 10

pieces which include the usual impulse
approximation, Fig. 11a, plus two
zigzag diagrams often referred to as pair contributions, Fig. 11b.

R

IA (a) Pair (b)
FIGURE M

4=



Care must be exercised in comparing relativistic calculations with non rela-
tivistic ones; in the former the pair terms are included in the RIA; in the
latter they are added to diagrams like Fig. 10d and considered to be meson
exchange contributions(33).

4, Applications Tnvofving Efectromagnetic Tnleractions

I will review only twe applications of the above ldeas.

4,1 Electro- and Photo-disintegration of the Deutercn

The classic example of the importance of MEC is the radiative neutron cap-
ture cross section {the time reversed threshold pﬁotodisintegration process)tBA)

and the electrodisintegration of

j%ﬁ;. ' the deuteron to an np final state
. d(einp very near threshold‘3>!. Recent
M ' data on the latter process is shown
' in Fig. 12. The curve labeled IA
E%E;. is the non-relativistic impulse
[ approximation and has a minimum at
ﬁ?sf 1 a2 = 10fm™° due to destructive inter-
ference between the deuteron S and D
state contributions. The other curves
ooF show the effectx MEC, which are
dominant here. However, in both this
[ case and radiative neutron capture,
sl the pair terms are the dominant con-
tribution to the non-relativistic
[ MEC, and in this sense these pro-
. a cesses are also evidence for the
0 5 0 a? () 20 importance of relativistic correc-

‘tions. The argument is not conclu-
FIGURE 12 sive, however, because the pair terms
can be reduced by employing a Y5Yu coupling for the pion, which transforms the
pair terms into a ymNN contact term, which must be regarded as a MEC.

Recently it has been suggested that the relativistic Darwin-Foldy and spin
orbit éorrections are important for an explanation of low energy photodisinte-
gration of the deuteron in the forward direction.{Be)

4.2 The Deuteron Form Factors

Relativistic corrections have been most extensively studied in elastic

electron-deuteron scattering. Corrections to the magnetic moment, quadrurole

_15-



(37,38} and it was

moment, and deutercn charge radius have been calculated
found many years ago that the corrections at low momentum transfer are helpful
in bringing the measured slope of the neutron charge form factor at 02 = 0
into line with electron-deuteron scattering data.(39)
The behavior of the form factors at high momentum transfer 02 has been re-

(25), and the G.I formalisﬁt38). The prin-

cently studied using the BS formalism
cipal results of these two calculations are shown in Fig. 13 (from Ref. 25) and
Pig. 14 (from Ref. 38), which both show the ratio of the relativistic calcula-
tion of the electric A structure function to the non-relativistic calculation

for identical wave functions. Note that both the horizontal and vertical scale
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FIGURE 13 FIGURE 14

are quite different; the dotted boxes shown in each figure cover the same re-

gion. Note that these two calculaticns are in rough agreement, and show that
the relativistic effects make the form factors smaller at high 02 than non-
relativistic calculations, further widening the discrepancy between theory and

experiment. However, results from the LF formalism by Frankfurt and Strickman(12)

show the opposite effect. Grach and Kondratyuktao, also use the LF formalism,
and are able to produce effects similar to Ref. (25, 38) or (12) depending on
which nucleon form factors they use. 35Still another aporoach has been taken by
Troitski’ and Trubnikov(AT}.

Recent measurements of the magnetic structure function, B, from 3Saclay out
to momentum transfers of 1 (GeV/c)2 show the same trends; the RIA calculations

fall considerably below the datathz].
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It is clear that measurements of the neutron charge form factor, GEn’
and better measurements of GEp at high 02 are essential before the data on
the deuteron form factor can be fully exploited. If the discrepancles re-
main, then we have evidence for large I = 0 meson exchange currents (which
could be due to the pwy interaction, or to the two meson exchange terms dis-

cussed above) or for 6 quark components in the deuteron wave function.
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